学术不端文献论文查重检测系统 多语种 图文 高校 期刊 职称 查重 抄袭检测系统
2013 届毕业设计(论文) 传统边缘检测方法及理论基础2.1 数字图像边缘检测的现状与发展 在数字图像处理中,边缘特征是图像的重要特征之一,是图像处理、模式识别和计 算机视觉的重要组成部分之一,图像边缘检测的结果直接影响进一步图像处理、模式识 别的效果。 近几十年来,图像边缘检测技术成为数字图像处理技术重要研究课题之一,随着科 学技术的发展,研究人员提出了很多图像边缘检测方法及边缘检测效果的评价方法,并 且将这些边缘检测技术应用于计算机视觉和模式识别工程领域,使得边缘检测技术的应 用范围越来越广,图像的边缘一般是图像的灰度或者颜色发生剧烈变化的地方,而这些 变化往往是由物体的结构和纹理,外界的光照和物体的表面对光的反射造成的。
图像的 边缘反映了物体的外观轮廓特征,是图像分析和模式识别的重要特征,数字图像处理技 术是一门交叉学科,数学理论、人工智能、视觉生理学和心理学等各种理论为边缘检测 技术研究注入新的活力,涌现出很多边缘检测理论和方法。 根据边缘检测所处理的图像 类型,可分为两大类:灰度图像边缘检测方法和彩色图像边缘检测方法。
最简单的边缘检测判据是梯度幅值阈值判据。 ④定位:如果某一应用场合要求确定边缘位置,则边缘的位置可在子像素分辨率上来估计,边缘的方位也可以被估计出来。 在边缘检测算法中,前三个步骤用得十分普遍。 这是因为大多数场合下,仅仅需要边缘检测器指出边缘出现在图像某一像素点的附近,而没有必要指出边缘的精确位置或方向。 1.导数 ,连续函数上某点斜率,导数越大表示变化率越大,变化率越大的地方就越是“边缘”,但是在计算机中不常用,因为在斜率90度的地方,导数无穷大,计算机很难表示这些无穷大的东西。 2.微分 ,连续函数上x变化了dx,导致y变化了dy,dy值越大表示变化的越大,那么计算整幅图像的微分,dy的大小就是边缘的强弱了。
在介绍完滤波的知识后,学习基本边缘检测算法是一件很轻松的事情,因为边缘检测本质上就是一种滤波算法,区别在于 滤波器的选择 ,滤波的规则是完全一致的 为了更好理解边缘检测算子,我们引入 梯度 (gradient) 这一概念,梯度是 人工智能 (artificial intelligence) 非常重要的一个概念,遍布 机器学习 、 深度学习 领域,学过微积分的同学应该知道一维函数的一阶微分基本定义为: